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TRANSPORT PROPERTIES OF EQUILIBRIUM DISSOCIATING 

AIR FOR USE I N  SOLUTIONS OF TRE 

BOUNDARY -LAYER EQUATIONS 

By Nathaniel B. Cohen 

SUMMARY 

Correlation formulas and t ab le s  of density,  t h e  product of densi ty  
and v iscos i ty ,  Prandt l  number, Lewis number, and a d i f fus ion  f'unction as 
funct ions of enthalpy and pressure are  evolved from avai lab le  property 
data. These f'unctions are appropriate f o r  ca lcu la t ing  real-gas  equi- 
l ibr ium boundary layers .  
from atmospheres t o  10 atmospheres and an enthalpy range from 
128.7 Btu/lb (corresponding t o  a temperature of 540' F) t o  16,930 Btu/lb 
(corresponding t o  flight a t  approximately 29,000 feet pe r  second). 

The cor re la t ions  cover a range i n  pressure 

INTRODUCTION 

Consideration of a i r  as a r e a l  gas i n  high-temperature flow phenom- 
ena requi res  knowledge of t h e  thermodynamic and t ranspor t  p roper t ies  
including t h e  e f f e c t s  of d i ssoc ia t ion  and, a t  very high temperatures, 
ionizat ion.  
t o  5 and tables and curves of t ransport  p roper t ies  are presented i n  ref- 
erences 1, 5 ,  6, and 7. 
model of "air atoms" and "air molecules" t o  develop approximate formulas 
f o r  t he  propert ies ,  and reference 9 f i t s  approximate ana ly t ic  f'unctions 
t o  t h e  data of reference 5,  such that a l l  proper t ies  are functions of 
pressure and temperature. 

Thermodynamic property data are presented i n  references 1 

I n  addi t ion,  reference 8 u t i l i z e s  a simple binary 

With t h e  exception of t h e  Mollier char t  of reference 3 and t h e  cha r t s  
of reference 4, a l l  t h e  aforementioned references present  proper t ies  as 
funct ions of temperature w i t h  e i t h e r  pressure o r  densi ty  as a parameter. 
For boundary-layer invest igat ions of air i n  chemical equilibrium, however, 
the  enthalpy is  t h e  most convenient dependent var iab le  f o r  t h e  energy 
equation, and t h e  most desirable s e t  of f l u i d  proper t ies  would be one 
with enthalpy as the independent variable and pressure as t h e  parameter, 
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Data in this form were used in references 10 and 11. During the course 
of equilibrium boundary-layer studies at the Gas Dynamics Branch of the 
Langley Research Center, certain correlation formulas and tables were 
evolved fo r  the pertinent thermodynamic and transport properties of air 
in chemical equilibrium, and these are presented herein. 
range up to nearly complete dissociation but are not valid in the ioni- 
zation region. 
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They cover the 
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SYMBOLS 

mass concentration 

constant-pressure specific heat 

effective constant-pressure specific heat 

frozen constant-pressure specific heat 

multicomponent diffusion coefficient 

binary diffusion coefficient 

internal energy per mol 

energy per mal at zero absolute temperature 

internal energy per mass, E/m 

energy per mass at zero absolute temperature, 

function defined by equations (23a) and (42) 

Eo/m 

local enthalpy per mol 

local enthalpy per mass, H/m 

reference enthalpy, 
25OETref = 2.119 x 108 ft2/sec* = 8,465 Btu/lb 

frozen conductivity 

effective conductivity 

reaction conductivity 

L 
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molecular weight, mass per mol 

frozen Prandtl  number 

e f f ec t ive  P r a n d t l  number 

L e w i s  number 

molar densi ty ,  m o l  per volume 

pressure 

reference pressure,  1 atmosphere = 2,117 lb / sq  f t  abs 

heat-flux vector 

gas constant per  mass, Ru/m 

universal  gas constant per mol 

temperature 

reference temperature, 273.16' K = 491.69' R 

average d i f fus ion  ve loc i ty  of  i t h  species  

mol f r ac t ion  

compress i b i l i t y  , p /PET 

v i scos i ty  

reference v iscos i ty ,  3 384 x slugs/f t -sec 

densi ty  , mas s /volume 

reference density,  2.498 x 10-3 slugs/cu f t  

Sub s c r  i p  t s : 

1,2 evaluated a t  conditions pl,hl and p2,h2, respect ively 

A atoms 

4 E evaluated at  reference enthalpy hE and a r b i t r a r y  pressure 
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i,J 

M 

N 

N 2  

0 

02 

and 

property of ith and jth species, respectively 

molecules 

nitrogen atoms 

nitrogen molecules 

oxygen atoms 

oxygen molecules 

Barred quantities are for undissociated air. 

CORFELATION FOFWILAS A.ND TABLES b 

In the correlations which follow, low-temperature thermodynamic i 

transport property data for air are taken from the NACA-NBS tables. 
(See ref. 1. ) High-temperature thermodynamic properties are those of 
references 3 and 4, both of these being derived from the tables in ref- 
erence 2 .* High-temperature transport properties are those of refer- 
ence 5. 

The correlations have been determined for the range 

0.0152 5 - h 5 2.0 
hE 

except where otherwise noted. The lower enthalpy limit corresponds to 
temperature of 540' R; the upper limit corresponds to the total enthalpy 
of the fluid encountered by a vehicle traveling in the atmosphere at a 
velocity of about 29,000 feet per second, a velocity somewhat larger 
than circular satellite velocity at the earth's surface. The pressure 
range should encompass those pressures encountered for all reasonable 
combinations of flight velocity and altitude up to an altitude of about 
250,000 feet. 

L 
*References 3 and 4 use slightly different compositions and thus 

slightly different molecular weights for undissociated air. 
ence is less than one-half of 1 percent and, in the light of the accuracy 
of the correlation formulas and tables found herein, is neglected. The 
present paper uses the constants for argon-free air Of reference 3. 

The differ- 
0 

L 
6 
4 
5 
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10-3 2.003 

10-1 1.954 
100 1.912 

10-2 1.980 

10 1 - 857 
r 

L 
6 
4 
5 

One other comment is appropriate at this point. The composition 
data of reference 4 indicate that, for all but the highest density 
levels, dissociation of oxygen is essentially complete before dissocia- 
tion of nitrogen begins, and that the latter process is essentially com- 
plete before ionization of oxygen and nitrogen atoms begins. Thus, as 
discussed in reference 5, the value of the compressibility factor Z 
indicates approximately the reaction occurring at any given condition. 
For undissociated air composed of nitrogen and oxygen molecules in the 
ratio 4:l by volume, the regions are 
tion, 1.2 < Z < 2.0 for range of nitrogen dissociation, and 2.0 < Z 
for the ionization of oxygen and nitrogen atoms. 
considered herein, h/hE = 2.0, the values of Z for the six pressure 
levels were obtained from reference 4 and are tabulated below: 

1 < Z < 1.2 for oxygen dissocia- 

For the maximum enthalpy 

4 I I p/pref I Value of z for h/hE = 2.0 

1 10-4 2.015 

These values indicate that, for all practical purposes, the present cor- 
relations remain within the range of nitrogen dissociation. 

Density 

Dimensionless plots of density ratio against enthalpy ratio at con- 
stant pressure for various pressure levels are shown in figure 1. The 
solid curve on the figure represents the function 

& 

The numerical coefficients in equation (1) were computed f’rom the data 
at enthalpy ratios less than 1.6 by the method of least squares, and the 
function fits the data reasonably well over the range 0.0152 2 h 5 2.0 
for all pressures shown. The maximum deviation in this range is about 
f25 percent at low enthalpy and the average deviation for all data is 

h about 26 percent. 0.2 < - < 1.6. 

hE 

Agreement is best in the range 
hE 
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The pressure dependence i s  es tabl ished i n  f igure  2 (densi ty  p lo t t ed  
aga ins t  pressure a t  the  reference enthalpy hE). The so l id  l i n e  i s  the  
function 

computed by t h e  method of least  squares, and t h e  difference between t h i s  
function and the  data points  i s  negl ig ib le  (less than one-half-percent 
deviation) . 

Equations (1) and (2)  may be used to es t ab l i sh  the  a r b i t r a r y  r a t i o  
p1/p2 from the  following iden t i ty :  

V i  sco s i t y  

The v iscos i ty  usual ly  appears i n  boundary-layer work i n  the  product 
of density and v iscos i ty  pp. A s e r i e s  of r e l a t ions  f o r  pp as a f’unc- 
t i o n  of p and h based on t h e  data  of reference 5 was given i n  refer- 
ence 11. These d i f f e ren t  functions were used t o  f i t  d i f f e r e n t  port ions 
of t h e  curves. A s ing le  function i s  derived i n  t h e  present  paper and i s  
shown subsequently. 

Plots  of t he  r a t i o  p ~ p ~ / p p  against  h/hE a t  Constant pressure i n  

t h e  range 5 5 10 are shown i n  f igure  3. 
Pref 

The function 
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c. 

b 

i s  p lo t t ed  as the  so l id  curve and was computed as 3 least-squares f i t  t o  
t h e  da t a  f o r  enthalpy r a t i o s  less than 1.6. 
equation (4)  i s  much b e t t e r  than w a s  the case for density.  
t i o n  i s  about *8 percent and t h e  average deviation i n  the  e n t i r e  range 
0.0152 5 5 2.0 i s  about *3 percent. 

Agreement between da ta  and 
M a x i m u m  devia- 

hE 

The pressure dependence i s  shown i n  figure 4, where PEC“E 

PrefcLref 
i s  

p lo t t ed  against  P/Pref. The da ta  and the  curve, t he  l a t t e r  a least- 
squares f i t  t o  the  data  and given by the function 

P E ~ E  = 0.225(&) 0.992 
PrefC’ref 

( 5 )  

agree within about one-half percent.  

Equations ( 4 )  and ( 5 )  determine 
follows : 

the a r b i t r a r y  r a t i o  p1p1/p2p2 as 

992 

Heat-Transfer Parameters 

The t ranspor t  propert ies  per t inent  t o  the  t r ans fe r  of heat i n  a 
reac t ing  gas mixture a r e  the  thermal conductivity and the  d i f fus ion  
coef f ic ien ts .  Correlations of these coef f ic ien ts  may be obtained i n  
t h e  same manner as was used fo r  density and the  densi ty-viscosi ty  prod- 
a c t ,  bu t  care  must be taken i n  the  def in i t ions  of t h e  coef f ic ien ts .  
The hea t  t r ans fe r  can be t r ea t ed  i n  two ways; i n  t h e  f i r s t ,  conduction 
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of heat by collisions of the atoms and molecules is kept separate from the 
heat transfer caused by the diffusion of the reacting gas species, and in 
the second (valid only for gas in chemical equilibrium), the two types of 
heat transfer are combined as an "effective conductivity." 
and results are described in the following paragraphs. 

t 

Both approaches 

Separate conduction and diffusion.- The heat-flux vector for a 
reacting mixture of perfect gases (neglecting pressure and thermal dif- 
fusion) is 

where 

4 + q = -kf grad T + niHiVi 
i 

L 
6 
4 (7) 
5 

In equations (7) and (8),  is the conductivity of the mixture due only 
to the collisions (the "frozen" conductivity), ni and Hi are the molar 
density and specific enthalpy of the ith species, respectively, is 
the average diffusion velocity of the ith species relative to the mass 
averaged velocity of the mixture, Dij is the multicomponent diffusion 
coefficient, and Xj is the molar concentration of species j, nj/n. 
The aforementioned relations are derived and discussed thoroughly in 
reference 12 (chs. 7, 8, and 11). 

kf 

vi 

In general, the multicomponent diffusion coefficients are extremely 
difficult to express, and thus the energy flux by diffusion is difficult 
to evaluate. However, in the case of a binary mixture, these coefficients 
become the binary diffusion coefficients (&ij =aji) and the diffusion 
terms may then be evaluated. This approach is usef'ul, therefore, in the 
case of dissociating air, which may be considered a binary mixture of 
"air atoms" and "air moleculestt because of the similar molecular weights, 
thermodynamic properties and collision cross sections of oxygen and nitro- 
gen. Such an approach was used in references 8 and 10. 
approach would not be useful for the ionization region, since at least 
three species, atoms, ions, and electrons exist. 

A parallel 

For a binary mixture, then, the diffusional velocity is, from 
equation (8) 
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and t h e  heat-flux vector is ,  from equations (9) and (7) ,  by using t h e  
subscr ip ts  A and M for t he  two species, atoms and molecules, 

p m ( H p ~  grad XM + H*A grad 
-) q = -kf grad T + 

It i s  convenient t o  convert t o  a mass bas is ,  i n  which 

H i  Enthalpy/Ml Enthalpy - - h .  = - =  
1 mi MaSS/hbl Mas S 

The mass concentration c i  i s  

where 
t h e  formulas 

m i s  the  mean molecular weight of t he  mixture given by e i t h e r  o 

Also, from the  de f in i t i ons  of  t he  concentrations, 

' X i  = c i  1 

Equations (12) and (13) may be d i f fe ren t ia ted  t o  y i e ld  

mi 'i grad CI = - grad xi - - m m mi grad xi 
i 
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I n  the  case of a binary mixture, from equations (l3), (14), and (l?), 

grad CA = -grad CM = - mAmM grad XA = - - mAmM grad XM (16) 
m2 m2 

When equations (11) and (16) a re  subs t i tu ted  i n t o  equation (lo), t he  
heat-flux vector  becomes 

5 

i 

direct ion normal t o  the  surface,  f o r  which the  pressure i s  constant.  For 4 

The equations are now special ized fo r  a constant-pressure process.  
This procedure i s  appropriate f o r  the boundary layer  because t h e  only 
important components i n  the  gradient a r e  the  p a r t i a l  der ivat ives  i n  t h e  

a mixture i n  chemical equilibrium, s ince t h e  mass concentrations are func- 
t i ons  only of t h e  state of t he  mixture 

grad c i  = (2) grad h + (3 grad p 
P h 

Then the heat-flux vector i s  ( fo r  constant pressure)  

-q + = kf grad T + & ( h ~  - hM)(2) grad h 
P 

Because the  enthalpy i s  the  na tura l  dependent var iable  fo r  t he  equilibrium 
energy equation, t he  conduction term i s  rewri t ten i n  terms of enthalpy. 
From the d e f i n i t i o n  fo r  a mixture of per fec t  gases, 

h c ihi  
i 

h i  = hi (T)  

t 1 

v 
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arrd 

, 

* 

b 

x 

f 

dhi 
grad h = Ci d~ grad T + 

i i 
hi grad ci 

and by using equation (18b) and the assumption of constant pressure 

grad h = cP,f grad T + f hi@)p grad h 

where the "frozen" specific heat is 

and 
dh; 

Equation (21) is specialized for a binary mixture and solved for 
When the result is substituted into equation (l9), there is obtained 

grad T. 

+ CI -q = - grad h 
-, f N 

where 
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The three functions, f (p,h) (ca l led  herein the  d i f fus ion  funct ion) ,  I 

NLe (Lewis number), and N B , ~  (frozen Prandt l  number), are purely prop- 
e r t i e s  of t h e  equilibrium mixture and approximate data f o r  t he  l a t t e r  two 
a r e  avai lable  f o r  t he  d issoc ia t ing  region i n  reference 5. 
"pa r t i a l "  coef f ic ien ts  i n  tha t  reference.  
have been determined f o r  equilibrium mixtures. 

These a r e  the  
Correlations of these functions 

I n  f igure 5 t he  "frozen" Prandtl  number from reference 5 i s  p lo t t ed  
aga ins t  enthalpy r a t i o  f o r  s i x  pressure l eve l s .  
a r e  that  of reference 1. No simple ana ly t ic  function was found t o  f i t  L 
these data but ,  since the  data approximately defined a unique curve f o r  6 
a l l  pressures, a cor re la t ing  table of Prandt l  number w a s  f i t t e d .  This 4 

5 function is  given i n  table I and p lo t t ed  i n  f igure  5 .  
Npr,f are l e s s  than 22 percent.  The deviations i n  t h e  function 1 - Np,-,f, 
which appears i n  ce r t a in  forms of the  boundary-layer energy equation, are 
less than t 5  percent.  
tolerances f o r  the  range 0.005 5 5 2.0, lom4 5 - 5 10. 

The low-temperature da ta  

The deviat ions i n  

4 
Thus, t he  function i n  t a b l e  I i s  va l id  t o  these  

hE Pref 
4 

The diffusion f'unction f (p ,h )  must be evaluated from the thermo- 
dynamic propert ies  of t h e  mixture as well  as the  Lewis number. (2)p is evaluated as follows: 

The t e r m  

For a i r ,  t he  equation of s t a t e  i s  

(24) 
- 

p = ZpRT = pRT 

Ru is  m where E = i s  the  gas constant f o r  undissociated a i r  and R = - . R u  
m 

t h e  gas constant f o r  t he  d issoc ia t ing  mixture. Then 

z = -  m 
m 

The molecular weight of a mixture of gases i s  given by equation (13). 
Thus, f o r  undissociated air  

(25) 



From equations (13) and (23) for dissociating air, 

= m  
Atoms 

The mass concentrations of the four constituents may be found as 
functions of Z from equation (27) and an assumed composition of undis- 
sociated air. The undissociated air is assumed to be a mixture of oxygen 
and nitrogen molecules in the molar ratio of 1:4, which corresponds to a 
mass ratio of 0.222:0.778 Eo2 = 0..222, EN* = 0.778). Then, regardless 
of the degree of dissociation, 

( 

co + co2 = 0.222 (284 

Equations (27), (28), and (14) may be combined to yield the concentrations 
as functions of Z as follows: 

For oxygen dissociation 1.0 5 Z 5 1.2: 
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For nitrogen dissociat ion 1.2 5 Z 5 2.0: 

L 
6 

(29b) 4 
5 

CO2 = 0 

h 

hE 

h m a -  
hE 

Equations (29) depend upon the  assumption, mentioned e a r l i e r ,  t h a t  d i s -  
sociation of oxygen i s  c o q l e t e  before d issoc ia t ion  of nitrogen begins, 
and tha t  t he  l a t t e r  process i s  complete before ionizat ion begins. 

The term hA - hM i n  equation (23a) i s  an average enthalpy d i f f e r -  
hE 

ence between the  "air atoms" and "air molecules" and may be evaluated 
from the propert ies  of oxygen and nitrogen atoms and molecules l i s t e d  i d  
reference 5 .  For the  mixture 

From equations ( 3 0 )  and (31) 



I 

L 

The enthalpies  of t he  consti tuents,  hg, hN, ho2, and hN2 may 

be evaluated from the  tabulated in te rna l  energies i n  reference 5 and 
the  r e l a t i o n s  

0 0 

The term - Ei - - - ei i s  a constant representing the  in t e rna l  energy of 
RUT R i T  

t h e  gas a t  zero absolute temperature. It i s  herein taken as zero f o r  t he  
molecules and f o r  t h e  atoms i s  
mol of t h e  diatomic molecules. 
a re ,  from reference 5 

- -  eoo - 
ROT 

one-half t h e  energy of d i ssoc ia t ion  per  
The dimensionless dissociat ion energies  

EO' - 29,5000 K 
R.T T 
- -  

U 

and , 

The i n t e r n a l  energy r e l a t i v e  

i s  a function only of temperature 
reference 5 .  

E i  - E i o  e i  - eio - - 
R i T  

t o  t h i s  constant 
RUT 

and i s  given i n  table I I ( b )  of  

Equation (33) may be rewri t ten,  by using the  de f in i t i on  hE z 25OET, 
as 
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where 

T+, = 16 

mo2 = 32 

q2 = 28 

and for t h e  assumed composition, from equation (26),  

6 = 28.8 

i 
The ac tua l  molecular weight of undissociated argon-free air  i s  28.86 

The more cor rec t  value should be used i n  computing t h e  gas con- 
(ref.  3) ,  which compares very favorably with the  assumed value shown 
above. L 

- Ru s t a n t  R = 7. 
and (34). 

The value 28.8 i s  used only i n  evaluating equations (29) 
m 

Values f o r  the  function f (p ,h )  (eq. (23a)) were computed f o r  t he  
six pressure levels and t h e  enthalpy range < 2.0, by using equa- 

t i o n s  (29), (32), (34), and the  data of reference 5 f o r  Lewis number and 

t h e  enthalpies of the  cons t i tuents .  The values of - i n  equations (29) 

0 5 hE 
az 

a -  
hE 
h 

were obtained from curves of Z against  h/hE p lo t t ed  from the da ta  of  
references 3 and 4. 
where h/hE is  less than about 0.10, Z = 1, And thus - - - f(p,h) = 0. 

Note t h a t  below t h e  l e v e l  of oxygen d issoc ia t ion  

h a -  
hE 

The r e su l t s  are shown i n  f igu re  6. 

The spread with pressure l e v e l  i s  moderately la rge  and, s t r i c t l y  

However, it i s  f e l t  that a function of enthalpy alone, 
speaking, a co r re l a t ing  function should be a function of both enthalpy 
and pressure. 
representing the  mean of the pressure spread, would be su f f i c i en t ly  
accurate for  boundary-layer purposes. (See Discussion. ) Such a s ingle  
function is  given i n  t a b l e  I and i s  shown i n  figure 6. The co r re l a t ing  L 

function i s  assumed t o  be zero fo r  h 5 0.15, t h i s  value represent ing an 
hw - 
-% 

average threshold of d i ssoc ia t ion .  c 
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Although t h e  v iscos i ty ,  frozen Prandtl  number, and diffusion func- 
t i o n  are su f f i c i en t  t o  determine the  coe f f i c i en t  of heat flow, t h e  L e w i s  
number i tself  i s  of i n t e r e s t .  

The Lewis  number da ta  of reference 5 are shown i n  f igure  7. No low 
enthalpy da ta  are ava i lab le  but ,  since t h e  Lewis  number descr ibes  t h e  
d i f fus ion  processes, it has no application f o r  equilibrium air  a t  enthal-  
p i e s  below those required f o r  dissociat ion.  
below - - - 0.1 a t  the  lowest pressure used herein; thus, l ack  of  Lewis 

number data i n  t h i s  region i s  unimportant. 

Dissociation i s  negl ig ib le  

hE 

Figure 7 ind ica tes  t h a t  t h e  Lewis number co r re l a t e s  roughly inde- 
pendent of pressure.  
shown as the  so l id  curve i n  figure 7. The cor re la t ion  function f o r  NLe 

i s  v a l i d  i n  the  l i m i t s  0.10 5 6 2.0, 5 - 2 5 10 within about 

+lo percent.  

A f i t t e d  s e t  of da ta  i s  given i n  t ab le  I and i s  

hE Pref  

Although the  cor re la t ions  presented i n  t h i s  sect ion a r e  va l id  only 
f o r  an equilibrium mixture, t he  general approach, ordinary conduction and 
d i f fus ion  e f f e c t s  being kept separate with a binary mixture, i s  a l s o  use- 
f u l  f o r  nonequilibrium flows. I n  t h i s  more general  case, equation (17) 
i s  appropriate,  but  t he  concentrations axe functions of the  reac t ion  rates 
and the  flow through t h e  species cont inui ty  equations, and the  coef f i -  
c i e n t s  are functions of concentrations as w e l l  as pressure and tempera- 
ture. 
not considered i n  the  present repor t .  

Few data are avai lable  for  nonequilibrium processes, and they are 

Lumping conduction and diffusion together . -  The second method f o r  
evaluating t h e  heat flux i n  a react ing mixture is  closely related t o  t h e  
method j u s t  described. (They would be equivalent f o r  a t r u e  binary mix- 
t u r e  of reac t ing  gases i n  equilibrium.) I n  t h i s  second method, the  d i f -  
fusion function i s  computed from t h e  multicomponent d i f fus ion  coe f f i c i en t s ,  
t h e  spec i f i c  react ions taking place being considered. The heat- t ransfer  
coe f f i c i en t  r e su l t i ng  from these diff'usion processes i s  then considered 
a "react ion conductivity" and i s  added t o  t h e  frozen conductivity. The 
method i s  r e s t r i c t e d  immediately t o  chemical equilibrium, but not  t o  a 
binary mixture. 
following. 

The method is outlined and t h e  results shown i n  the  

For a multicomponent mixture of react ing gases, t h e  heat f l u x  i s  
given by equations (7)  and (8) .  
t h e  molar concentrations a r e  functions only of t he  state of the mixture, 
o r  

If the  gas i s  i n  chemical equilibrium, 
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grad xi = ($) grad T + (2) grad P 
P T 

E 

(35b) 

The heat-flux vector i s  then, f o r  a constant-pressure process, 

-; = (kf + &)grad T ( 3 6 )  

where the "reaction conductivity'' k r  i s  defined L 
6 
4 

(37)  5 

c 

The quantity 
includes ordinary conduction by c o l l i s i o n s  kf and heat t r a n s f e r  by 
diffusion of react ing species kr. 

ke = kf + & i s  considered an e f fec t ive  conductivity and 
C 

The mixture enthalpy i s  given by equation (20a) and i s  a property 
of t h e  s t a t e  of the  mixture. Then, 

grad h = (g) grad T + ($)T grad p 
P 

and f o r  a constant-pressure process 

grad h = cpJe grad T 

where 

When the h e a t - f l u  vector i s  wri t ten i n  terms 
gradient by using equation (38), there  r e s u l t s  

grad 
v grad h = - 

-q = c P,e %,e 
-, ke h 

/P 

of t h e  enthalpy 
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I 

where t h e  e f f ec t ive  Prandt l  number i s  defined as  

The details of evaluating the  reaction conductivity were shown i n  
reference 13 where t h i s  method was first successfully applied.  
i n  reference 5 ,  applied the equations of reference 13 t o  t h e  ca lcu la t ion  
of the e f f ec t ive  Prandt l  number i n  equilibrium air  ( the  e f f ec t ive  Prandt l  
number i s  Hansen's "F'randtl number"). H i s  results are shown i n  figure 8 
p lo t t ed  against  enthalpy r a t i o  f o r  the six pressure l eve l s .  There i s  
some spread with pressure and it i s  caused mainly by t he  s h i f t  of t h e  
maxima and minima t o  s l i g h t l y  higher enthalpies  a t  t h e  higher pressures .  
Nevertheless, an approximate correlat ing function independent of pressure 
has been f i t t e d  t o  the  data and is shown i n  figure 8 and i n  t a b l e  11. 
Low-temperature data are not shown; a t  temperatures below the  d issoc ia t ion  
l e v e l  (h/hE 
numbers a r e  equal, and t h e  data  of  reference 1 (cor re la ted  i n  t a b l e  I) 
are appropriate.  

Hansen, 

i s  less than about 0.10), the  frozen and e f f ec t ive  Prandt l  

Comparison of t he  two methods.- The two methods f o r  expressing t h e  

They may be compared by equating equations (22) and (40), which 
t ranspor t  coe f f i c i en t s  of heat flux should, i n  pr inc ip le ,  give i d e n t i c a l  
r e s u l t s .  
gives another r e l a t i o n  f o r  computing the diffusion funct ion 

NPr, f 
NP., e 

f (p ,h )  = - - 1 

The diffusion f'unction given i n  equation (42) w a s  computed from the data 
of reference 5 and the r e s u l t s  are shown p lo t t ed  against  enthalpy r a t i o  
i n  f igure  9. Again, t h e  pressure spread i s  pr imari ly  caused by a s h i f t  
i n  t h e  two maxima and the  m i n i m  with pressure l eve l .  
funct ion has been f i t t e d  t o  the data  and i s  shown as the s o l i d  curve on 
the figure. This function i s  l i s t e d  i n  table 11. I n  t h i s  case the cor- 
r e l a t i n g  function has been s e t  equal t o  zero for  & 6 0.13. For com- 

parison, the cor re la t ing  function which resu l ted  from t h e  da ta  ca lcu la ted  
from equation (23a) ( the  f'unction of t ab le  I) i s  shown i n  figure 9 a lso ,  
as the dashed curve. 
i n  the approximate range 

However, a s ingle  

It i s  apparent that s ign i f i can t  differences occur 

h 0.3 < --< 1.2  
hE 

The possible  reasons f o r  the  differences i n  the  two functions w i l l  
~ 

be considered i n  the  next sect ion.  
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DISCUSSION 

The correlation formulas for density, and the density-viscosity 
product (eqs. (1) and (k), respectively) and the correlation tables for 
Prandtl number, Lewis number, and the diffusion function (tables I and 11) 
give approximate variation of these quantities with enthalpy at constant 
pressure, independent of pressure level in the range 10-4 5 - P 5 10. 

Pref 
In this form, these functions are particularly useful in integrating the 
boundary-layer equations because of the condition that the pressure is 
constant across the boundary layer. These correlations then represent 
the distribution of the respective f’unctions across the boundary layer. 

Fromthe boundary-layer point of view, the most important of these 
functions is the product pp, and figure 3 indicates that equation (4) 
represents the data very well. ,The question arises as to the accuracy 
of the viscosity data of reference 5, from which the present correlation 
has been derived. 
coefficient predictions of reference 5 exists. Some indirect experimental 
confirmation is apparent in the comparison of theoretical and experimental 
aerodynamic heat-transfer rates in reference 14, where the theory makes 
use of Hansen’s viscosity coefficients. However, scatter in the data and 
the possibility of compensating errors in the viscosity coefficients or 
in the heat-transfer theory serve to deny complete confirmation of the 
calculated viscosities. 

No direct experimental confirmation of the viscosity 

The transport properties computed in references 6 and 7 differ quan- 
titatively somewhat from those of Hansen, the differences resulting from 
the differing assumptions made for the intermolecular potentkals. Reso- 
lution of these differences must await more detailed description of the 
interaction potentials or direct experimental determination of the coef- 
ficients. In the present paper, reference 5 was used for transport prop- 
erties because it gave data typical of the variety available, and because 
it covered the widest range in pressure and temperature. 

The density correlation formula (eq. (3))  is not sufficiently accu- 
rate for the calculation of absolute density, but its value lies in 
obtaining solutions of the complete boundary-layer equations. 
ratio enters the boundary-layer equations explicitly only in the axial 
pressure gradient term in the momentum equation, and for high-temperature 
flows with cool walls, this term is not too important (ref 15). 

The density 

The frozen Prandtl number correlation fits the data very well, but 
this is not true of the diffusion function 
Prandtl number which includes the effects of diffusion. Nevertheless, the 
pressure-independent correlating functions should be useful for integrating 
the boundary-layer equations. 

f(p,h) or the effective 

L 
6 
4 
5 

L 

b 

c 

? 
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d As was pointed out previously, the two approaches for computing the 
heat-flux coefficients for an equilibrium mixture of reacting gases led 
to the somewhat different results (see fig. 9 ) .  In principle, Hansen's 
calculations are somewhat more sophisticated in that his reaction effects 
are computed with mixtures of three constituents: oxygen atoms and mole- 
cules and nitrogen molecules in the oxygen dissociation region, and oxygen 
atoms and nitrogen atoms and molecules in the nitrogen dissociation region. 
In this way it is possible to consider that all atoms diffuse through all 
molecules but that the reactions involve only certain atoms and molecules. 
In the first method given herein, where a binary mixture of "air atoms" 
and "air molecules1r was assumed, it is impossible to make this distinction. 
However, the manner in which these assumptions enter the resulting dif- 
fusion coefficients is not clear. 

However, one of the assumptions used in both the present binary 
approach and in that of reference 5 appears to contribute to the discrep- 
ancy, that is, the assumption that oxygen and nitrogen dissociation 
regions do not overlap. 
the thermodynamic properties, and there is also probably little effect 
upon the viscosity and frozen conductivity, but a larger effect may be 
imposed upon the reaction conductivity and effective Prandtl number, 
which comes about as follows: 

1 

This assumption does not have much effect upon 
4 

The assumption of separate oxygen and nitrogen regions leads to the 

requirement that (g)p, and hence , be zero at the transition 
between the two regions (at Z = 1.2 for the assumed composition). How- 
ever, the more correct thermodynamic data of references 2 to 4 show no 
such behavior. The slight overlap of dissociation regions therein keeps 

finite. Now the diffusion function, when separate conduction and @3J? 
diffusion are considered, is proportional to (2)p (see eq* (23a)), 

@p 

(ap at 

under the present assumptions. which is in turn proportional to 

The data computed from equation (23a) and plotted in figure 6 used values 
of this derivative obtained from the data of references 2 to 4 and thus 
the point at which Z = 1.2 was not given by f(p,h) necessarily equal 
to zero. Had the thermodynamic data of reference 5 been used in conjunc- 
tion with equation (23a) instead, where the condition of zero 

Z = 1.2 was enforced, the function f(p,h) would have necessarily been 
zero at this point. 
level, p/pref = and the results are shown in figure 10. The solid 
curve represents equations (23a) using the thermodynamic property data of 

Such a calculation was carried out at one pressure 
J 

n references 2 and 4. (This is the data of fig. 6 at this pressure.) The 
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dashed curve represents the data from equation (42) using the Prandtl 
number data of reference 5. 
sure.) 
that Hansen's thermodynamic data (ref. 3) was used to compute 

with the condition that 

(This is the data of fig. 9 at this pres- 
The third curve represents equation (23a) with the modification 

= O 

at 

2 = 1.2 

This condition imposes a minimum on the curve at - X  0.37 with f(p,h) L 
hE 

equal to zero. 
begin to take on the general appearance of the data from equation (42), 
the dashed curve, but with a much smaller second maximum. 

Under these conditions, the results of equation (2%) 
b 

On the other hand, Hansen has pointed out to the author in a private 
communication that the Butler and Brokaw formulas for thermal conductivity 
give maxima in ke at slightly lower enthalpies than the maxima in cp,e 
for each reaction. Since equation (42) may be expressed as 

then the function of equation (42) should show a pronounced maximum fol- 
lowed by a distinct minimum for each reaction, a trend shown clearly in 
the data and correlating curve on figure 9 (from eq. (42)). If these 
trends are real, the assumption in the first method that the gas is a 
binary mixture of atoms and molecules may suppress the first minimum and 
second maximum, giving instead a flattened out curve in this region, 
exactly the behavior as shown in figure 6. 

Real air should behave most nearly like a binary atom-molecule mix- 
ture where oxygen dissociation begins and where nitrogen dissociation 
nears completion. 
these regions. 

It is gratifying that the two methods do agree in 

Fortunately, the question of choosing between the two diffusion 
functions for equilibrium flows is actually somewhat academic. Aside 
from the fact that many flow situations will not be in chemical equi- 
librium, even in the equilibrium cases, the diffusion effect is not 
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s large in the dissociation region, and the differences resulting from 
using the different methods should be negligible. For example, for 
stagnation flow with filly dissociated air outside the boundary layer 
at a pressure of atmospheres and a constant Lewis number of 1.4, 
reference 10 predicts that the diff'usion effect is to increase the heat 
transfer by a factor of about 15 percent over that for a Lewis number 
of unity (f(p,h) = 0). A correlation function for data computed from 
equation (23a) but using a constant Lewis number of 1.4 is shown in fig- 
ure 6 and may be compared both to the function in figure 6 obtained by 
using the variable Lewis number of reference 5 and to the function in 
figure 9. Whereas, the N L ~  = 1.4 curve always has f(p,h) 2 0, that 
is, it tends to increase the heat transfer toward the wall, the variable 
Lewis number curve and that of figure 9 are positive at low enthalpies 
and negative at higher enthalpies; this condition leads to the belief 
that in a boundary layer with high enthalpy at the outer edge and low 
enthalpy at the wall, the effect of diffusion will be self-compensating. 
One would then expect a total diffusion effect much smaller than that 
predicted by Fay and Riddell (ref. 10) with a negligible dependence upon 
which of the two diffusion functions was used. Quantitative comparisons 
and a more definite conclusion must await solutions of the boundary-layer 
equations using the pertinent real-gas properties. 

1' 

4 

CONCLUDING REMARKS 

Correlation formulas and tables for density, the density-viscosity 
product, Frandtl number, Lewis number, and a diffusion function as func- 
tions of enthalpy and pressure have been developed from the available 
thermodynamic and transport property tables. 
the functions lend themselves to calculations of the equilibrium boundary 
layer in real-gas flow. 
10-4 atmospheres to 10 atmospheres, and in enthalpy from 128.7 Btu-lb 
(corresponding approximately to a temperature of 90'  R) to 16,930 Btu/lb 
(corresponding roughly to complete dissociation of nitrogen molecules, or 
to the total enthalpy of the air encountered by a vehicle in flight in 
the sensible atmosphere at a velocity of about 29,000 ft/sec). 

Presented in this manner, 

The correlations cover a range in pressure from 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., October 8, 1959. 
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TABLE I.- CORRELATION TABLES FOR FROZEN PRANDTL NUMBER, LEWIS NUMBER, 

AND THE D I F F U S I O N  FUNCTION O F  EQUATION (23a) 

L o w  temperature 

0.005 
* 010 
.015 
.020 
.026 
.031 
.036 
.042 
.048 
053 

N P r ,  f 

0 770 
739 

.708 

.689 

.680 

.680 

.689 
696 

.702 

.684 

0.10 
.20 
30 

.40 
50 

.60 - 70 

.80 - 90 
1.00 
1.10 
1.20 

1.40 
1.30 

1.50 
1.60 
1.70 
1.80 
1.90 
2 .oo 

High temperature 

NW,f 

0.768 - 771 
755 

.742 
731 

.721 

.712 

.698 
693 

.689 

.686 

.684 

.683 

.684 

.686 

.690 
0695 
.700 
9 707 

.TO4 

* For 5 0.13, f (p ,h)  = 0. 
hE 

1 355 
1 363 
1.268 
1.196 
1.154 
1 .lo2 
1 .Ob5 

.986 
931 

.880 
,832 
789 
750 

.714 

.684 

.660 
637 

.619 

.604 
590 

f(P,h) 

"0 
.190 
.171 
.087 
0% 
039 

.016 
- .016 
- .052 
- -089 
- .124 
- -159 - .191 
- .219 

- .265 
- .267 
- .259 
- *235 - -204 

- .244 

1 
6 
4 
5 

b 

t 
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TABLE 11.- CORRELATION TABLES FOR EZTECTIVE PRANDTL NUMBER AND TRE 

DIFFUSION FUNCTION OF EQUATION (42) 

0.10 
.20 
-30 
.40 
0 %  

.60 
9 70 
.80 
-90 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

" 0  
.231 
.112 

- .006 
.210 
.230 
.198 
139 

9 075 
.016 

- -040 
- .092 
- -139 - .181 
- .218 
- . 2 9  - .270 
- -279 - .268 
- .235 

I 

0.740 

.688 

.619 

758 
.615 
593 
593 

.608 
0635 
.670 
.711 
759 

.806 

.850 

.888 

.922 
949 
958 

9 947 
.904 

* 
For As 0.13, f (p ,h)  = 0 .  

hE 
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Figure 1.- Density r a t i o  as a function of enthalpy r a t i o  a t  various 
pressure l e v e l s .  
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Figure 2.- Density as a function of pressure a t  the reference 
enthalpy hE. 
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Figure 3.- Ratio of density-viscosity product as a f'unction of enthalpy 
ratio at various pressure levels. 
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